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Chapter 6
Bearing Capacity

6-1. Scope

This chapter provides guidance for the determination of
the ultimate and allowable bearing stress values for foun-
dations on rock. The chapter is subdivided into four
sections with the following general topic areas: modes
and examples of bearing capacity failures; methods for
computing bearing capacity; allowable bearing capacity;
and treatment methods for improving bearing capacity.

6-2. Applicability

a. Modes of failure, methods for estimating the ulti-
mate and allowable bearing capacity, and treatments for
improving bearing capacity are applicable to structures
founded directly on rock or shallow foundations on rock
with depths of embedments less than four times the foun-
dation width. Deep foundations such as piles, piers, and
caissons are not addressed.

b. As a rule, the final foundation design is controlled
by considerations such as deformation/settlement, sliding
stability or overturning rather than by bearing capacity.
Nevertheless, the exceptions to the rule, as well as pru-
dent design, require that the bearing capacity be
evaluated.

Section I
Failure Modes

6-3. General

Bearing capacity failures of structures founded on rock
masses are dependent upon joint spacing with respect to
foundation width, joint orientation, joint condition (open
or closed), and rock type. Figure 6-1 illustrates typical
failure modes according to rock mass conditions as modi-
fied from suggested modes by Sowers (1979) and
Kulhawy and Goodman (1980). Prototype failure modes
may actually consist of a combination of modes. For
convenience of discussion, failure modes will be described
according to four general rock mass conditions: intact,
jointed, layered, and fractured.

6-4. Intact Rock Mass

For the purpose of bearing capacity failures, intact rock
refers to a rock mass with typical discontinuity spacing

(S term in Figure 6-1) greater than four to five times the
width (B term in Figure 6-1) of the foundation. As a
rule, joints are so widely spaced that joint orientation and
condition are of little importance. Two types of failure
modes are possible depending on rock type. The two
modes are local shear failure and general wedge failure
associated with brittle and ductile rock, respectively.

a. Brittle rock. A typical local shear failure is initi-
ated at the edge of the foundation as localized crushing
(particularly at edges of rigid foundations) and develops
into patterns of wedges and slip surfaces. The slip sur-
faces do not reach the ground surface, however, ending
somewhere in the rock mass. Localized shear failures are
generally associated with brittle rock that exhibit signifi-
cant post-peak strength loss (Figure 6-1a).

b. Ductile rock. General shear failures are also initi-
ated at the foundation edge, but the slip surfaces develop
into well defined wedges which extend to the ground
surface. General shear failures are typically associated
with ductile rocks which demonstrate post-peak strength
yield (Figure 6-1b).

6-5. Jointed Rock Mass

Bearing capacity failures in jointed rock masses are
dependent on discontinuity spacing, orientation, and
condition.

a. Steeply dipping and closely spaced joints. Two
types of bearing capacity failure modes are possible for
structures founded on rock masses in which the predom-
inant discontinuities are steeply dipping and closely
spaced as illustrated in Figure 6-1c and 6-1d. Discon-
tinuities that are open (Figure 6-1c) offer little lateral
restraint. Hence, failure is initiated by the compressive
failure of individual rock columns. Tightly closed dis-
continuities (Figure 6-1d) on the other hand, provide
lateral restraint. In such cases, general shear is the likely
mode of failure.

b. Steeply dipping and widely spaced joints. Bearing
capacity failures for rock masses with steeply dipping
joints and with joint spacing greater than the width of the
foundation (Figure 6-1e) are likely to be initiated by split-
ting that eventually progresses to the general shear mode.

c. Dipping joints. The failure mode for a rock mass
with joints dipping between 20 to 70 degrees with respect
to the foundation plane is likely to be general shear
(Figure 6-1f). Furthermore, since the discontinuity
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Figure 6-1. Typical bearing capacity failure modes associated with various rock
mass conditions
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represents major planes of weakness, a favorably oriented
discontinuity is likely to define at least one surface of the
potential shear wedge.

6-6. Layered Rock Mass

Failure modes of multilayered rock masses, with each
layer characterized by different material properties, are
complicated. Failure modes for two special cases, how-
ever, have been identified (Sowers 1979). In both cases
the founding layer consists of a rigid rock underlain by a
soft highly deformable layer, with bedding planes dipping
at less than 20 degrees with respect to the foundation
plane. In the first case (Figure 6-1g), a thick rigid layer
overlies the soft layer, while in the second case (Fig-
ure 6-1h) the rigid layer is thin. In both cases, failure is
initiated by tensile failure. However, in the first case,
tensile failure is caused by flexure of the rigid thick layer,
while in the second case, tensile failure is caused by
punching through the thin rigid upper layer. The limiting
thickness of the rigid layer in both cases is controlled by
the material properties of each layer.

6-7. Highly Fractured Rock Masses

A highly fractured rock mass is one that contains two or
more discontinuity sets with typical joint spacings that are
small with respect to the foundation width (Figure 6-1i).
Highly fractured rock behaves in a manner similar to
dense cohesionless sands and gravels. As such, the mode
of failure is likely to be general shear.

6-8. Secondary Causes of Failure

In addition to the failure of the foundation rock, aggres-
sive reactions within the rock mineralogy or with ground
water or surface water chemistry can lead to bearing
capacity failure. Examples include: loss of strength with
time typical of some clay shales; reduction of load bear-
ing cross-section caused by chemical reaction between the
foundation element and the ground water or surface water;
solution-susceptible rock materials; and additional stresses
imposed by swelling minerals. Potential secondary causes
should be identified during the site investigation phase of
the project. Once the potential causes have been identi-
fied and addressed, their effects can be minimized.

Section II
Methods for Computing Bearing Capacity

6-9. General

There are a number of techniques available for estimating
the bearing capacity of rock foundations. These tech-
niques include analytical methods, traditional bearing
capacity equations, and field load tests. Of the various
methods, field load tests are the least commonly used for
two reasons. First, as discussed in Chapter 4, field load
tests, such as the plate bearing test, are expensive. Sec-
ond, although the test provides information as to the load
that will cause failure, there still remains the question of
scale effects.

6-10. Definitions

Two terms used in the following discussions require defi-
nition. They are the ultimate bearing capacity and allow-
able bearing value. Definition of the terms are according
to the American Society for Testing and Materials.

a. Ultimate bearing capacity. The ultimate bearing
capacity is defined as the average load per unit area
required to produce failure by rupture of a supporting soil
or rock mass.

b. Allowable bearing capacity value. The allowable
bearing capacity value is defined as the maximum pres-
sure that can be permitted on a foundation soil (rock
mass), giving consideration to all pertinent factors, with
adequate safety against rupture of the soil mass (rock
mass) or movement of the foundation of such magnitude
that the structure is impaired. Allowable bearing values
will be discussed in Section III of this chapter.

6-11. Analytical Methods

The ultimate bearing capacity may be implicitly estimated
from a number of analytical methods. The more con-
venient of these methods include the finite element and
limit equilibrium methods.

a. Finite element method. The finite element
method is particularly suited to analyze foundations with
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unusual shapes and/or unusual loading conditions as well
as in situations where the foundation rock is highly vari-
able. For example, the potential failure modes for the
layered foundation rock cases illustrated in Figures 6-1g
and 6-1h will require consideration of the interactions
between the soft and rigid rock layers as well as between
the rigid rock layer and the foundation. The primary
disadvantage of the finite element method is that the
method does not provide a direct solution for the ultimate
bearing capacity. Such solutions require an analyses of
the resulting stress distributions with respect to a suitable
failure criterion. In addition to the method’s ability to
address complex conditions, the primary advantage is that
the method provides direct solutions for deformation/
settlement.

b. Limit equilibrium. The limit equilibrium method is
applicable to bearing capacity failures defined by general
wedge type shear, such as illustrated in Figures 6-1b,
6-1d, 6-1f, and 6-1i. The limit equilibrium method, as
applied to sliding stability, is discussed in Chapter 7.
Although the principals are the same as in sliding stability
solutions, the general form of the equations presented in
Chapter 7 needs to be cast in a form compatible with
bearing capacity problems. The ultimate bearing capacity
corresponds to the foundation loading condition necessary
to cause an impending state of failure (i.e. the loading
case where the factor of safety is unity).

6-12. Bearing Capacity Equations

A number of bearing capacity equations are reported in
the literature which provide explicit solutions for the
ultimate bearing capacity. As a rule, the equations repre-
sent either empirical or semi-empirical approximations of
the ultimate bearing capacity and are dependent on the
mode of potential failure as well as, to some extent, mate-
rial properties. In this respect, selection of an appropriate
equation must anticipate likely modes of potential failure.
The equations recommended in the following discussions
are presented according to potential modes of failure.
The appropriate equation number for each mode of failure
is given in Figure 6-1.

a. General shear failure. The ultimate bearing
capacity for the general shear mode of failure can be
estimated from the traditional Buisman-Terzaghi (Terzaghi
1943) bearing capacity expression as defined by Equa-
tion 6-1. Equation 6-1 is valid for long continuous foun-
dations with length to width ratios in excess of ten.

(6-12)qult cNc 0.5 γBNγ γDNq

where

qult = the ultimate bearing capacity

γ = effective unit weight (i.e. submerged unit wt.
if below water table) of the rock mass

B = width of foundation

D = depth of foundation below ground surface

c = the cohesion intercepts for the rock mass

The terms Nc, Nγ, and Nq are bearing capacity factors
given by the following equations.

(6-2a)Nc 2 Nφ1/2 (Nφ 1)

(6-2b)Nγ Nφ1/2 N 2
φ 1

(6-2c)Nq N 2
φ

(6-2d)Nφ tan2 (45 φ /2)

where

φ = angle of internal friction for the rock mass

Equation 6-1 is applicable to failure modes in which both
cohesion and frictional shear strength parameters are
developed. As such, Equation 6-1 is applicable to failure
modes illustrated in Figures 6-1b and 6-1d.

b. General shear failure without cohesion. In cases
where the shear failure is likely to develop along planes
of discontinuity or through highly fractured rock masses
such as illustrated in Figures 6-1f and 6-1i, cohesion
cannot be relied upon to provide resistance to failure. In
such cases the ultimate bearing capacity can be estimated
from the following equation:

(6-3)qult 0.5 γBNγ γDNq
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All terms are as previously defined.

c. Local shear failure. Local shear failure represents
a special case where failure surfaces start to develop but
do not propagate to the surface as illustrated in Fig-
ure 6-1a. In this respect, the depth of embedment contrib-
utes little to the total bearing capacity stability. An
expression for the ultimate bearing capacity applicable to
localized shear failure can be written as:

(6-4)qult cNc 0.5γBNγ

All terms are as previously defined.

d. Correction factors. Equations 6-1, 6-3, and 6-4
are applicable to long continuous foundations with length
to width ratios (L/B) greater than ten. Table 6-1 provides
correction factors for circular and square foundations, as
well as rectangular foundations with L/B ratios less than
ten. The ultimate bearing capacity is estimated from the
appropriate equation by multiplying the correction factor
by the value of the corresponding bearing capacity factor.

Table 6-1
Correction factors (after Sowers 1979)

Foundation Cc Cγ
Shape Nc Correction Nγ Correction

Circular 1.2 0.70

Square 1.25 0.85

Rectangular

L/B = 2 1.12 0.90
L/B = 5 1.05 0.95
L/B = 10 1.00 1.00

Correction factors for rectangular foundations with L/B
ratios other than 2 or 5 can be estimated by linear
interpolation.

e. Compressive failure. Figure 6-1c illustrates a case
characterized by poorly constrained columns of intact
rock. The failure mode in this case is similar to uncon-
fined compression failure. The ultimate bearing capacity
may be estimated from Equation 6-5.

(6-5)qqult 2 c tan (45 φ /2)

All parameters are as previously defined.

f. Splitting failure. For widely spaced and vertically
oriented discontinuities, failure generally initiates by
splitting beneath the foundation as illustrated in Fig-
ure 6-1e. In such cases Bishnoi (1968) suggested the fol-
lowing solutions for the ultimate bearing capacity:

For circular foundations

(6-6a)qult JcNcr

For square foundations

(6-6b)q 0.85JcNcr

For continuous strip foundations for L/B≤ 32

(6-6c)qult JcNcr / (2.2 0.18 L /B)

where

J = correction factor dependent upon thickness of the
foundation rock and width of foundation.

L = length of the foundation

The bearing capacity factorNcr is given by:

(6-6d)
Ncr

2N 2
φ

1 Nφ

(cotφ) (S/B)










1 1
Nφ

Nφ (cotφ) 2Nφ1/2

All other terms are as previously defined. Graphical solu-
tions for the correction factor (J) and the bearing capacity
factor (Ncr) are provided in Figures 6-2 and 6-3,
respectively.

g. Input parameters. The bearing capacity equations
discussed above were developed from considerations of
the Mohr-Columb failure criteria. In this respect, material
property input parameters are limited to two parameters;
the cohesion intercept (c) and the angle of internal friction
(φ). Guidance for selecting design shear strength parame-
ters is provided in Chapter 4. However, since rock
masses generally provide generous margins of safety
against bearing capacity failure, it is recommended that
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Figure 6-2. Correction factor for discontinuity spacing
with depth (after Bishnoi 1968)

Figure 6-3. Bearing capacity factor for discontinuity
spacing (after Bishnoi 1968)

initial values of c and φ selected for assessing bearing
capacity be based on lower bound estimates. While inex-
pensive techniques are available on which to base lower
bound estimates of the friction angle, no inexpensive
techniques are available for estimating lower bound cohe-
sion values applicable to rock masses. Therefore, for
computing the ultimate bearing capacity of a rock mass,
the lower bound value of cohesion may be estimated from
the following equation.

(6-7a)c
qu (s)

2 tan 







45 φ
2

where

qu = unconfined compressive strength of the intact
rock from laboratory tests.

(6-7b)s exp (RMR 100)
9

All other parameters are as previously defined.

6-13. Eccentric Load on a Horizontal Foundation

Eccentric loads acting on foundations effectively reduce
the bearing capacity. Figure 6-4a illustrates a typical
structure subjected to an eccentric load. In order to pre-
vent loss of rock/structure contact at the minimum stress
edge of the foundation (Figure 6-4a), the structure must
be designed so that the resultant of all forces acting on
the foundations passes through the center one-third of the
foundation. As indicated in Figure 6-4a, the stress distri-
bution can be approximated by linear relationship. Equa-
tions 6-8a and 6-8b define the approximate maximum and
minimum stress, respectively.

(6-8a)q(max)

Q
B









1 6e
B

(6-8b)q(min)

Q
B









1 6e
B
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Figure 6-4. Typical eccentrically loaded structure
foundation

where

q(max) = maximum stress

q(min) = minimum stress

Q = vertical force component of the resultant of
all forces acting on the structure

B = the foundation width

e = distance from the center of the foundation to
the vertical force componentQ

The ultimate bearing capacity of the foundation can be
approximated by assuming that the vertical force com-
ponent Q is uniformly distributed across a reduced
effective foundation width as indicated in Figure 6-4b.
The effective width is defined by the following equation.

(6-10)B′ B 2e

The effective width (B′) is used in the appropriate bearing
capacity equation to calculate the ultimate bearing
capacity.

6-14. Special Design Cases

The bearing capacity equations discussed above are appli-
cable to uniformly loaded foundations situated on planar
surfaces. Frequently, designs suited to the particular
requirements of a project require special considerations.
Special design cases for which solutions of the ultimate
bearing capacity are readily available are summarized in
Figure 6-5. As indicated in Figure 6-5, these special
cases include inclined loads, inclined foundations, and
foundations along or near slopes. Guidance for these
special cases is provided in EM 1110-2-2502 and the
NAVDOCKS DM-7. Ultimate bearing capacity solutions
for special design cases should be in keeping with the
modes of failure summarized in Figure 6-1.

Section III
Allowable Bearing Capacity Value

6-15. General

The allowable bearing capacity value is defined in para-
graph 6-10b. In essence, the allowable bearing capacity is
the maximum limit of bearing stress that is allowed to be
applied to the foundation rock. This limiting value is
intended to provide a sufficient margin of safety with
respect to bearing failures and deformation/settlement.
Nevertheless, a prudent design dictates that, once the
allowable bearing capacity value has been determined, a
separate calculation be performed in order to verify that
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Figure 6-5. Special foundation design cases

the allowable differential deformation/settlement is not
exceeded.

6-16. Determination

There are at least three approaches for determining allow-
able bearing capacity values. First, the allowable value
may be determined by applying a suitable factor of safety
to the calculated ultimate bearing capacity. The selection
of final allowable bearing values used in design of
hydraulic structures must be based on the factor of safety
approach in which all site specific conditions and unique
problems of such structures are considered. Second,
allowable values may be obtained from various building
codes. However, building codes, in general, apply only to
residential or commercial buildings and are not applicable

to the unique problems of hydraulic structures. Finally,
allowable values may be obtained from empirical correla-
tions. As a rule, empirical correlations are not site spe-
cific and hence should be used only for preliminary
design and/or site evaluation purposes. Regardless of the
approach used, the allowable value selected for final
design must not exceed the value obtained from the factor
of safety considerations discussed in paragraph 6-16a.

a. Factor of safety. The allowable bearing capacity
value, qa, based on the strength of the rock mass is
defined as the ultimate bearing capacity,qult, divided by a
factor of safety (FS):

(6-11)qa qult /FS

The average stress acting on the foundation material must
be equal to or less than the allowable bearing capacity
according to the following equation.

(6-12)Q/BL ≤ qa

For eccentrically loaded foundations theB′ value (i.e.
Equation 6-10) is substituted for theB term in Equa-
tion 6-12. The factor of safety considers the variability of
the structural loads applied to the rock mass, the relia-
bility with which foundation conditions have been deter-
mined, and the variability of the potential failure mode.
For bearing capacity problems of a rock mass, the latter
two considerations are the controlling factors. For most
structural foundations, the minimum acceptable factor of
safety is 3 with a structural load comprised of the full
dead load plus the full live load.

b. Building codes. Allowable bearing capacity
values that consider both strength and deformation/
settlement are prescribed in local and national building
codes. Local codes are likely to include experience and
geology within their jurisdiction while national codes are
more generic. For example, a local code will likely spec-
ify a particular rock formation such as “well-cemented
Dakota sandstone” while a national code may use general
terminology such as “sedimentary rock in sound condi-
tion.” As a rule, allowable values recommended by the
building codes are conservative.

c. Empirical correlations. Peck, Hanson, and
Thornburn (1974) suggested an empirical correlation
between the allowable bearing capacity stress and the
RQD, as shown in Figure 6-6. The correlation is intended
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Figure 6-6. Allowable contact pressure on jointed rock

for a rock mass with discontinuities that “are tight or are
not open wider than a fraction of an inch.”

6-17. Structural Limitations

The maximum load that can be applied to a rock foun-
dation is limited by either the rock’s ability to sustain the
force without failure or excessive settlement, or the ability
of the substructure to sustain the load without failure or
excessive deformation. In some cases the structural
design of the foundation element will dictate the mini-
mum element size, and, consequently, the maximum con-
tact stress on the rock. For typical concrete strengths in
use today, the strength of the concrete member is signifi-
cantly less than the bearing capacity of many rock
masses.

Section IV
Treatment Methods

6-18. General

Treatment methods for satisfying bearing capacity require-
ments are essentially the same as those for satisfying
deformation/settlement requirements discussed in Chap-
ter 5. In addition to the previously discussed methods, an
examination of the general ultimate bearing capacity equa-
tion (i.e. Equation 6-1) indicates the importance of two
parameters not directly related to deformability. These
two parameters are the effective unit weight of the foun-
dation rock and the depth of the foundation below the
ground surface.

6-19. Effective Unit Weight

For foundations below the water table the effective unit
weight is the unit weight of the foundation rock minus the
unit weight of water (i.e. submerged unit weight of the
rock). Hence, foundations located above the water table
will develop significantly more resistance to potential
bearing capacity failures than foundations below the water
table.

6-20. Foundation Depth

Foundations constructed at greater depths may increase
the ultimate bearing capacity of the foundation. The
improved capacity is due to a greater passive resisting
force and a general increase in rock mass strength with
depth. The increased lithostatic pressure closes discon-
tinuities, and the rock mass is less susceptible to surficial
weathering. Occasionally, deeper burial may not be
advantageous. A region with layers of differing rock
types may contain weaker rock at depth. In such an
instance, a strong rock might overlie a layer such as mud-
stone, or, if in a volcanic geology, it might be underlain
by a tuff or ash layer. In these instances, deeper burial
may even decrease the bearing capacity. The geologic
investigation will determine this possibility.
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